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Abstract

The relationships between host-pathogen population dynamics in wildlife are poorly under-

stood. An impediment to progress in understanding these relationships is imperfect detec-

tion of diagnostic tests used to detect pathogens. If ignored, imperfect detection precludes

accurate assessment of pathogen presence and prevalence, foundational parameters for

deciphering host-pathogen dynamics and disease etiology. Respiratory disease in bighorn

sheep (Ovis canadensis) is a significant impediment to their conservation and restoration,

and effective management requires a better understanding of the structure of the pathogen

communities. Our primary objective was to develop an easy-to-use and accessible web-

based Shiny application that estimates the probability (with associated uncertainty) that a

respiratory pathogen is present in a herd and its prevalence given imperfect detection. Our

application combines the best-available information on the probabilities of detection for vari-

ous respiratory pathogen diagnostic protocols with a hierarchical Bayesian model of patho-

gen prevalence. We demonstrated this application using four examples of diagnostic tests

from three herds of bighorn sheep in Montana. For instance, one population with no detec-

tions of Mycoplasma ovipneumoniae (PCR assay) still had an 6% probability of the patho-

gen being present in the herd. Similarly, the apparent prevalence (0.32) of M.

ovipneumoniae in another herd was a substantial underestimate of estimated true preva-

lence (0.46: 95% CI = [0.25, 0.71]). The negative bias of naïve prevalence increased as the

probability of detection of testing protocols worsened such that the apparent prevalence of

Mannheimia haemolytica (culture assay) in a herd (0.24) was less than one third that of esti-

mated true prevalence (0.78: 95% CI = [0.43, 0.99]). We found a small difference in the esti-

mates of the probability that Mannheimia spp. (culture assay) was present in one herd

between the binomial sampling approach (0.24) and the hypergeometric approach (0.22).

Ignoring the implications of imperfect detection and sampling variation for assessing patho-

gen communities in bighorn sheep can result in spurious inference on pathogen presence

and prevalence, and potentially poorly informed management decisions. Our Shiny applica-

tion makes the rigorous assessment of pathogen presence, prevalence and uncertainty
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straightforward, and we suggest it should be incorporated into a new paradigm of disease

monitoring.

Introduction

Understanding the ecology of infectious wildlife diseases is critical for the informed manage-

ment of animal populations. There is heightened interest in the role of infectious disease in

conservation biology (e.g., associations between pathogen communities and individual vital

rates of the host population such as survival and fecundity), which requires a better under-

standing of the relationships between pathogen dynamics, individual host susceptibility, dis-

ease events and host population dynamics [1–4]. The few studies that have addressed the

interplay between pathogen dynamics and host population dynamics have primarily focused

on pathogens associated with high mortality, although less virulent pathogens clearly have the

potential to impact host population demography [2,5–7]. As a result, our understanding of

pathogens causing chronic endemic infections and the resulting host population dynamics are

particularly poor [2,8]. Moreover, considering the evidence that a large and increasing fraction

of emerging infectious diseases have an origin in wildlife populations which can serve as reser-

voirs for zoonotic pathogens, an improved understanding of the ecology of infectious diseases

in wildlife populations is of paramount importance [9–12].

Infectious disease is the result of the interaction(s) between pathogens, hosts and the envi-

ronment (the classic “epidemiological triangle”) [3,13], and requires accurately monitoring

changes in pathogen population dynamics over long enough time scales to account for tempo-

ral variation in potential environmental drivers, pathogen communities and host population

dynamics [8]. Compounding the complexity of understanding how the different components

of the epidemiological triangle are related to the etiology of a disease is the problem that patho-

gen communities are imperfectly observed. Decades of work on the implications of the imper-

fect detection of individual animals in a population on estimating abundance, occupancy, or

vital rates has resulted in a diverse and rigorous set of tools to account for the bias induced by

imperfect detection [14]. At the core of these methods is the simple principle that the failure to

detect an individual does not mean it is not present. These principles have a long history in the

study of human and livestock diseases, where efforts to account for uncertain and imperfect

detection (or, test sensitivity) have profound implications for understanding disease processes

and pathogen prevalences [15–18]. To borrow from this wealth of work, it is clear that an

assessment of pathogen communities in wildlife populations that does not explicitly account

for the sampling process is fundamentally incomplete [19–21].

Such inadequacy in assessments of pathogen communities may handicap our understand-

ing of disease dynamics. Test results interpreted without accounting for imperfect detection

can obscure or weaken inferences on disease etiology by conflating variation in pathogen pop-

ulation dynamics with variation in detection, thereby potentially yielding spurious conclusions

on disease etiology [22,23]. This problem is further compounded when a disease has a polymi-

crobial origin, and the multiple pathogen/testing protocol combinations have different proba-

bilities of detection such that the results of testing cannot be interpreted without accounting

for imperfect detection [19,24]. Although inference on disease dynamics at the population

level is improved with higher probabilities of detection, even tests with high sensitivities can be

misleading when applied at the individual level [25], e.g., in the context of a test and cull pro-

gram to remove infected individuals [26,27]. This unclear understanding can cascade into
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investing resources into ineffective management strategies or a failure to consider alternative

management strategies. For populations of wild hosts for which there are few gold-standard

reference tests and in which the true disease state of individuals are not known, estimating the

sensitivities and specificities of diagnostic tests can be challenging [28]. However, test sensitiv-

ity for wild hosts can be approximated using occupancy models, which is a flexible and

straightforward method of evaluating test performance while incorporating multiple layers of

uncertainty in a hierarchical modeling framework [20,29]. Although this is only an approxi-

mation to the true, unknown, test sensitivity, it is still an improvement to correct prevalence

estimates using this approximated sensitivity. The relative ease with which detection probabil-

ity of a diagnostic testing protocol can be approximated, coupled to the consequences to infer-

ence for failing to do so, suggests that explicitly accounting for imperfect detection should be

the paradigm for wildlife disease monitoring programs [19,23].

Here, we present a web-based application that allows users to assess the consequences of

imperfect detection for estimating the presence and prevalence of a pathogen in a population.

As a motivating example, we demonstrate the utility of the approach for assessing the presence

and prevalence of respiratory pathogens in bighorn sheep (Ovis canadensis) in the western

United States. Respiratory disease in bighorn sheep can be devastating to populations due to

high mortality during epizootics [24] and subsequent years of high summer lamb mortality

[30]. Disease outbreak events are thought to be a factor limiting the growth of some bighorn

sheep populations and the restoration of the species [31]. However, despite the significant con-

sequences of disease outbreaks that have occurred repeatedly for decades, the etiological

understanding of bighorn sheep respiratory disease is surprisingly incomplete. Multiple bacte-

rial pathogens (or combinations of pathogens) have been linked to the disease, including

Mycoplasma ovipneumoniae and the Pasteurellaceae family of pathogens [24,32–34]. There is

emerging evidence that M. ovipneumoniae is consistently present when population-limiting

disease events occur, but M. ovipneumoniae is also present in herds without evidence of disease

and relatively less is known about the role Pasteurellaceae play [24,32,35]. The conditions that

enable these pathogens to cause epizootic or enzootic disease are unresolved. Compounding

this lack of clarity regarding the relationships between pathogens and disease outbreak events

has been a consistent failure to account for imperfect detection of the pathogens proposed as

causal agents [19]. This lack of rigorous treatment of pathogen sampling data likely has mean-

ingful consequences for understanding the role of pathogens in respiratory disease outbreaks.

Nearly all of the hypotheses and tentative explanations that appear in the literature related to

pathogens responsible for respiratory disease in bighorn sheep and the disease process can be

traced back to interpretations of results of pathogen sampling data [32].

To confront this problem, our primary objectives were to: 1) synthesize information on

detection probabilities of testing protocols for pathogens thought to be causal agents of respi-

ratory disease in bighorn sheep into a hierarchical Bayesian model to estimate prevalence, and

2) to provide a simple interface to the model that can be routinely used by managers and

researchers to estimate respiratory pathogen presence and prevalence while properly account-

ing for imperfect detection. Our goal is to provide a coherent framework for assessing patho-

gen communities by estimating both prevalence and presence (i.e., the probability of freedom

from infection) in bighorn sheep, while accounting for imperfect detection and variation in

sampling intensity and design. We developed a web-based Shiny application to make this

framework easily accessible in order to aid studies focused on pathogen community assess-

ments, and to ensure interpretations of pathogen sampling data and management decisions

can be made with a proper assessment of the uncertainty associated with pathogen

monitoring.
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Methods

Ethics statement

Our work is based on already-published data and simulations only, and presents a computa-

tional tool for biologists. For this particular work, no animals were involved, nor where public/

private lands accessed. Our work depends on two studies involving animals that have previ-

ously been published in PLOS ONE, and where the Ethics statements indicate the appropriate

handling [19,35].

Definitions

We define pathogen prevalence as the probability that any individual animal in a herd is

infected with a pathogen, and differentiate this usage from the probability that an animal is

infectious or the probability that an animal is diseased [36]. Apparent prevalence (hereafter

AP) is the probability that an animal will test positive for the pathogen, which is the product of

the actual underlying prevalence (hereafter “true prevalence”, TP) and the probability of detec-

tion (or, the sensitivity of the testing protocol), also referred to as naïve prevalence [20,29]. We

note that we are not including the probability of false positives (related to the specificity of a

test) in our work due to the lack of rigorous quantitative information on the specificity of diag-

nostic protocols. Importantly, apparent prevalence is only equal to true prevalence when the

detection of pathogens is perfect [36,37]. The goal for a rigorous testing program is to combine

information on detection with information on apparent prevalence reported in testing results

to estimate the underlying true prevalence of a pathogen. Estimated quantities are denoted by

a ^ accent.

Bayesian model for disease prevalence

We adopted a Bayesian paradigm as a modeling approach. This has important advantages

when detection probabilities are low and sample sizes are small, resulting in a failure to detect

pathogens, and is a natural paradigm in which to account for imperfect detection (i.e., the

probability of detection is less than 1 and is not known with certainty) [36,37]. Our study relied

on previous work that utilized an occupancy-modeling framework to estimate the probabilities

of detection for different pathogen/protocol combinations [19]. Our approach here was to use

those estimated probabilities of detection in a simple model for the true prevalence. Under

binomial sampling (i.e., assuming that sampling is from an infinite population), the probability

distribution for the number of animals that test positive for a pathogen out of a sample is given

by:

½PositivesjTP; detection� � BinomialðTP � detection;NÞ ð1Þ

where TP is the true prevalence, detection corresponds to the probability of detecting a patho-

gen in an infected animal using a single protocol, and N is the sample size. Alternatively, this

distribution is also expressed using the apparent prevalence:

½PositivesjTP; detection� � BinomialðAP;NÞ ð2Þ

We used a mixture prior to allow the true prevalence to be equal to zero [36]. This approach

decomposed true prevalence into biologically meaningful probabilities of the probability that a

pathogen is in the herd,

½PathogenPresence� � BernoulliðdÞ ð3Þ
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and, conditional on the presence of a pathogen, the prevalence of the pathogen,

½ConditionalPrevalencejPathogenPresence� � BetaðaP; bPÞ ð4Þ

such that the true prevalence (TP) is given by,

TP ¼ ConditionalPrevalence � PathogenPresence ð5Þ

This decomposition into the probabilities of pathogen presence and prevalence allows the

estimation of the probability that a pathogen is in the herd even when sampling results in no

positive tests. We then used a beta distribution as the prior for the probability of detection

given an animal was randomly sampled and was infected with the pathogen:

½detectionjTP� � BetaðaD; bDÞ ð6Þ

This formulation naturally extended to the incorporation of multiple tests per animal.

Where multiple tests using the same protocol were used on the same animal, the probability of

detecting that pathogen at least once was re-written as:

prðat least one detectionÞ ¼ 1 � ð1 � detectionÞn ð7Þ

where n was the number of tests.

Finally, the complete model required the specification of the hyperparameters related to the

probability of pathogen presence (d), true prevalence (aP, bP) and detection (aD, bD). We set d

equal to 0.5 to provide a vague prior on the probability of pathogen presence (it can be shown

that this is equivalent to setting a hyperprior such that d~Beta(1,1)). Similarly, we set aP = bP =

1 to provide a vague prior on true prevalence. Critical for prevalence estimation is the use of

informed priors for the probability of detection, and we relied on previous work that estimated

pathogen- and protocol-specific detection probabilities for pathogens in bighorn sheep using

an occupancy framework [19,35]. We took advantage of prior work that used moment match-

ing to parameterize a beta distribution for each pathogen and protocol (i.e., set values of aD

and bD) using the mean and variance of the estimated detection probabilities from this work

[35].

The use of the binomial model is predicated on sampling from an infinite (or approximated

by a very large) population [36,37]. However, when sampling from a finite population without

replacement the correct distribution is the hypergeometric distribution, although the binomial

model is generally agreed to be a good approximation when population sizes are large enough

(e.g., when the sample is less than 10% of the population size) [16]. The hypergeometric

approach to the Bayesian estimation of disease prevalence would modify the above approach

such that the number of positive tests is given by:

½PositivesjK; n;N� � HypergeometricðK; n;NÞ ð8Þ

where K is the number of “successes” in the population, n is the sample size, and N the size of

the herd. The number of successes is the number of animals with the pathogen that test posi-

tive in the sample from the herd, and is given by the product of true prevalence, detection and

the population size:

K ¼ TP � detection � N ð9Þ

The remainder of the model specification, e.g., priors for detection and true prevalence,

remained the same between the two approaches. We demonstrate the differences between the

binomial and hypergeometric approaches below, and our Shiny app allows the user to choose

which method is most appropriate to the situation.
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We note two simplifying assumptions of our model. First, there is strong evidence that

the probability of detection for pathogens can be related to the intensity of infection [38–41].

Our model assumes that all individuals subject to the same testing protocols have the same

probability of a positive test (i.e., independent of the intensity of infection). Second, the preva-

lence of pathogens can be strongly affected by the spatial/temporal dynamics of the host popu-

lation such that a single estimate of prevalence may not reflect relevant, hidden pathogen

population dynamics [42,43]. In both cases, the assumptions were made to match how the

probabilities of detection were originally estimated, and to reflect the lack of any information

on variation in prevalence or pathogen detection from individual, spatial, or temporal sources

[19].

Estimation of Bayesian models

We used an MCMC approach to approximate the posterior distributions of the model parame-

ters. We implemented our approach via the runjags package [44] as an interface to JAGS 4.3.0

[45] in the R programming environment [46]. Models were run for 50,000 iterations with the

first 10,000 iterations discarded as burnin. Chain convergence was graphically assessed using

traceplots and the Gelman-Rubin statistic, where convergence was assumed for bR values less

than 1.05 [47].

Case study of bighorn sheep in Montana

Here, we use four examples of pathogen testing from recently published research on bighorn

sheep respiratory pathogens [19,35] to illustrate the consequences of imperfect detection for

estimating true prevalence (Table 1) (although note that additional Pasteurellaceae/protocol

combinations are available in the online application). We chose three herds from Montana

(Petty Creek, Taylor-Hilgard herd, and Highlands) (Fig 1) that were tested for a diverse group

of pathogens using multiple testing protocols that can best illustrate the consequences of imper-

fect detection (details available in [19,35]). The primary testing protocol in this study for M.

ovipneumoniae in bighorn sheep utilized tryptic soy broth (TSB) as a transport media with a

PCR assay (named the “TSB-PCR Protocol”). Based on nasal swab samples tested by PCR and

analyzed in an occupancy-modeling framework, this protocol has a modestly high probability

of detection ( ddetection ¼ 0:72; ½95% credible interval;CI ¼ 0:62 � 0:81�) [19,35]. Using this

protocol with two nasal swabs per animal, the apparent prevalence of M. ovipneumoniae in the

Petty Creek herd in the winter of 2015–2016 was 0, and 0.32 for the Taylor-Hilgard herd using a

single nasal swab in the winter of 2016–2017 (Table 1). In contrast to the TSB-PCR protocol for

M. ovipneumoniae, the primary testing protocol for Mannheimia haemolytica (a Pasteurella-
ceae) (tryptic soy broth with a culture assay, named “TSB-culture”) based on nasal swab samples

has a substantially lower probability of detection ( ddetection ¼ 0:24; ½95% CI ¼ 0:15 � 0:32�)

[19,35]. Using this protocol, the apparent prevalence of Mannheimia haemolytica in the Taylor-

Hilgard herd using a single nasal swab in the winter of 2013–2014 was 0.24. Finally, the appar-

ent prevalence of Mannheimia spp. (a Pasteurellaceae) in the Highlands herd in the winter of

2015–2016 using the TSB-culture testing protocol with two nasal swabs per animal was 0

( ddetection ¼ 0:09; ½95% CI ¼ 0:07 � 0:12�) [19,35].

Application goals

Our goal was to apply a Bayesian approach to the estimation of true prevalence (or, freedom

from infection in the case of no positive tests) into an easy-to-use web-based application.

Although code to run models similar to ours is available from other sources, the specifics of
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Bayesian model estimation and the use of informed priors renders the routine use of such

models impractical for many users and for many disease surveillance programs. Therefore, we

combined prior work on the probabilities of detection and the specifics of our modeling

approach into a web-based Shiny application [48] that integrates R code into a convenient

user-interface (https://quantitativebiology.shinyapps.io/pathogens/) where the selection of a

particular pathogen/protocol combination automatically uses the relevant informed prior to

estimate true prevalence.

Results

Shiny application

The interface to the application has three main components: 1) a tab that contains information

on the Pathogens and protocols available, 2) a tab that contains the inputs required and out-

puts generated for Estimating prevalence in the herd, and 3) a tab that allows a general explora-

tion of the consequences of Imperfect detection (Fig 2).

Our application only requires a user to input sampling specifics: number of positive tests,

sample size, herd size (for the use of hypergeometric sampling), pathogen, and testing protocol

(Fig 3). The application then generates estimates of the true prevalence (or, probability of free-

dom from infection and true prevalence in the case of no positive tests) and associated

Table 1. Sampling summary for the examples used from bighorn sheep in Montana. These results are taken from a comprehensive assessment of pathogen communi-

ties in bighorn sheep in Montana [35].

Herd Year Pathogen Protocol Herd size, N Sample size, n Positive tests3 Apparent prevalence

Petty Creek 2015–2016 M. ovipneumoniae TSB-PCR1 160 16 0 0

Taylor-Hilgard 2013–2014 Mannheimia haemolytica TSB-culture2 280 29 7 0.24

Taylor-Hilgard 2016–2017 M. ovipneumoniae TSB-PCR 1 280 31 10 0.32

Highlands 2015–2016 Mannheimia spp. TSB-culture2 75 16 0 0

1-2Specifics of the protocols used for pathogen testing are in S1 Table.
3Where multiple samples per individual were collected, this refers to the number of individuals with at least one positive detection.

https://doi.org/10.1371/journal.pone.0237309.t001

Fig 1. Study area map. The locations of bighorn sheep herds used as examples in this analysis.

https://doi.org/10.1371/journal.pone.0237309.g001

PLOS ONE Uncertainty in pathogen detection

PLOS ONE | https://doi.org/10.1371/journal.pone.0237309 September 8, 2020 7 / 18

https://quantitativebiology.shinyapps.io/pathogens/
https://doi.org/10.1371/journal.pone.0237309.t001
https://doi.org/10.1371/journal.pone.0237309.g001
https://doi.org/10.1371/journal.pone.0237309


uncertainty. The output from the application is divided into three tabs: a Summary tab con-

taining estimated probabilities of freedom from the pathogen and pathogen prevalence and

associated uncertainty, a Figures tab showing graphs of the approximate posterior distribu-

tions for the estimated probabilities, and a Prior for detection probability tab that illustrates

the informed prior used for the specific pathogen-protocol combination [19,35].

Consider a hypothetical example in which the prevalence of a particular Pasteurellaceae spe-

cies, Bibersteinia trehalosi, was assessed using the MSU testing protocol (details on the Patho-

gens and protocols tab) by testing a random sample of 20 bighorn sheep using a single swab,

and no animals tested positive. The Summary tab indicates that the probability of the hypo-

thetical herd being free from the pathogen was 0.70; conversely, the probability that the herd

hosted the pathogen and the lack of detection was due to imperfect testing was 0.30 (Fig 4).

The apparent prevalence in this case is 0%; however, the very low probability of detection for

Fig 2. Interface to the Bayesian estimation of respiratory pathogens in bighorn sheep. The Shiny application has three main

components: 1) a tab containing information on pathogens and protocols available to the used (“Pathogens and protocols”), 2) a tab

estimating the probability of the herd being free from the pathogen and the prevalence of a pathogen (“Estimating prevalence”), and 3)

a tab that allows a more general exploration of the consequences of imperfect detection (“Imperfect detection”). The third tab

(“Imperfect detection”) allows for a more general exploration of the consequences of imperfect detection to freedom from pathogen or

prevalence estimation.

https://doi.org/10.1371/journal.pone.0237309.g002
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Fig 3. Inputs for the estimation of freedom from infection and prevalence. The user first selects a pathogen(1)–

protocol(2) combination for which prior work has estimated a probability of detection [19,35]. Second, the user sets

the parameters of the sampling design: (3) whether the sampling is from a finite or infinite population, (4) the number

of animals in the sample, (5) the number of swabs per individual, (6) the number of positive tests, and (7) the herd size

(used for finite population sampling only).

https://doi.org/10.1371/journal.pone.0237309.g003
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this pathogen/protocol combination implies a non-zero probability that the pathogen was in

the herd and simply missed in the sampled individuals, with significant resulting uncertainty

in what the true prevalence was [95% CI = 0.0–0.81] (Fig 4). The graphs of the approximate

posterior distributions on the Figures tab illustrate the skewed distributions associated with

estimates of prevalence (Fig 5). The mismatch between apparent prevalence (0 out of 20 ani-

mals) and the estimated true prevalence is a result of low probabilities of detection for this

pathogen-protocol combination (as visible in the Prior for detection probability tab) and mod-

est number of animals sampled (Fig 6).

Pathogen prevalence in bighorn sheep

Our first example highlights that even when the detection probability for a given pathogen is

relatively high, failure to account for imperfect detection and sampling may lead to the mis-

leading inference that a pathogen is not present when there remains some probability the path-

ogen may be present. The apparent prevalence of M. ovipneumoniae in the Petty Creek herd in

2015–2016 was 0 (0 positive tests out of 16 tested animals). However, accounting for the

imperfect detection probability of the testing protocol suggests that there was a non-trivial

probability that M. ovipneumoniae was present in the herd and simply not detected in the sam-

ple of individuals tested (infinite population (binomial sampling): dPathogenPresence ¼ 0:06)

(S1 Fig). The estimated true prevalence of the pathogen in the herd was cTP ¼ 0:004 (infinite

population: ([95% CI = 0.0–0.06]). These results are in close agreement with the finite sam-

pling model ( dPathogenPresence ¼ 0:06; cTP ¼ 0:0003; ½95% CI ¼ 0:0 � 0:05�) due to the

small sample size (n = 16) relative to the herd size (N = 160) (S2 Fig).

Fig 4. Summary output. These are the estimates of the probability the herd is free from a pathogen and prevalence

assuming sampling from an infinite population. In this hypothetical example, 0 out of 20 animals tested positive for

Bibersteinia trehalosi using the MSU testing protocol. Imperfect detection of the pathogen resulted in a substantial

probability that the pathogen was present and simply missed (approximately 0.30).

https://doi.org/10.1371/journal.pone.0237309.g004
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Second, imperfect detection results in an apparent prevalence of the pathogen that can be a

significant underestimate of true prevalence. Despite the comparatively high probability of

detection for M. ovipneumoniae using the testing protocol the apparent prevalence in the Tay-

lor-Hilgard herd in 2016–2017 (10 out of 31 animals with a positive test, 0.32) was a significant

underestimate of the true prevalence (S3 Fig). After accounting for imperfect detection, the

estimated true prevalence was cTP ¼ 0:46 (infinite population: [95% CI = 0.25–0.71]). The

uncertainty associated with this prevalence estimate (and all such estimates based on small

samples with imperfect and uncertain detection) is substantial and may render this estimate of

little value for understanding disease etiology.

Third, this mismatch between apparent prevalence (0.32) and true prevalence (0.46) wors-

ens as the detection probability for the pathogen declines. For example, for Mannheimia hae-
molytica in the Taylor-Hilgard herd in 2013–2014, results from the testing protocol suggested

Fig 5. Graphs of the approximate posteriors for the probability of a herd being free from a pathogen and

pathogen prevalence for a hypothetical example. In this hypothetical example, 0 out of 20 animals tested positive for

Bibersteinia trehalosi using the MSU testing protocol.

https://doi.org/10.1371/journal.pone.0237309.g005
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an apparent prevalence of 0.24 (7 out of 29 animals with a positive test). However, the esti-

mated true prevalence of this pathogen was cTP ¼ 0:78 (infinite population: [95% CI = 0.43–

0.99]), over three times the value of the apparent prevalence (S4 Fig). Thus, even when a testing

protocol indicates pathogen presence, the estimated prevalence of the pathogen may be under-

estimated if TP is not properly estimated.

In each of the above examples, the results from the infinite population approach (binomial

sampling) agree quite closely to the finite population approach (hypergeometric sampling) due

to the small sample sizes relative to the herd size. For our final example, in 2015–2016 the

apparent prevalence of Mannheimia spp. using the testing protocol in the Highlands herd

was 0 (0 out of 16 animals tested positive), which was misleading given that the probability

that the herd hosted the pathogen and it was missed due to imperfect detection was high

( dPathogenPresence ¼ 0:24) (S5 Fig). However, the sample size (n = 16) relative to the popula-

tion size (N = 75) was large enough to violate the traditional assumption of sampling from an

infinite population. Results from the finite population approach suggested the probability that

the pathogen was actually in the herd was slightly lower ( dPathogenPresence ¼ 0:22) (S6 Fig).

Discussion

The ability to assess pathogen communities in wildlife populations when detection is imperfect

is a pre-requisite for informed disease management and a better understanding of disease eti-

ology [19,20,22,23,35]. However, proper pathogen community assessments require informa-

tion on the probabilities of detection associated with each testing protocol coupled to a

Bayesian framework in order to properly account for uncertainty. This combination can ren-

der the approach impractical or unrealistic for otherwise interested users that desire to trans-

late diagnostic results into estimates of true prevalence and associated uncertainty. Our work

integrates this unified framework with a user-friendly, web-based Shiny application in order

to illustrate the consequences of testing protocols, sample sizes and sampling designs to the

Fig 6. Graph of the informed prior distribution. This is the separately estimated probability of detecting Bibersteinia
trehalosi with the MSU protocol. Priors for detection probability were extracted from previous work [35].

https://doi.org/10.1371/journal.pone.0237309.g006
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understanding of the relationship between apparent and estimated true prevalence. Moreover,

our application is easily scalable to accommodate new pathogens and testing protocols, or

updates to current combinations.

The primary utility of our application is to help inform stakeholders, biologists, managers

and disease ecologists about the integrated consequences of imperfect testing, sampling

designs, and sampling error. Furthermore, where retrospective data are available without

repeated sampling, this application can provide estimates of prevalence and the probability

that a pathogen is in a herd along with related estimates of uncertainty so as to assist informed

management. We demonstrated the application using four examples of testing for respiratory

pathogens in bighorn sheep, which we use to illustrate three main points. First, even when the

detection probability is high failure to account for imperfect detection and sampling leads to

misleading inference; a problem that is compounded when sample sizes are small. Despite the

TSB-PCR testing protocol having a comparatively high probability of detection for M. ovipneu-
moniae, the apparent prevalence of the pathogen in the Taylor-Hilgard herd was substantially

less than the estimated true prevalence and the probability that the pathogen was actually in

the Petty Creek herd despite no positive tests was non-zero. Second, the misleading inference

that results from failing to account for imperfect detection grows substantially worse as the

probability of detection decreases until there is a gross mismatch between apparent and true

prevalence (the apparent prevalence of Mannheimia haemolytica in the Taylor-Hilgard herd

example was approximately one-third that of estimated true prevalence). Moreover, in the case

of low and uncertain detection probabilities and small sample sizes, the resulting uncertainty

in prevalence estimates may render the results useless for understanding disease etiology and

management actions that rely on prevalence such as non-selective culling programs to reduce

prevalence [49]. Third, sampling assumptions should be checked for each application.

Although in our final example the difference in inference for pathogen prevalence between

assuming sampling from an infinite population (binomial sampling) or sampling from a finite

population (hypergeometric sampling) was small, we expect this difference to magnify with

smaller herds such as those involved in management interventions for population restoration.

Given that binomial sampling is only an approximation to the truth and that inference based

on hypergeometric sampling is easily handled in our application, we strongly recommend

inference on pathogen community dynamics be based on the latter where possible. However,

the benefit of using a hypergeometric sampling distribution must be weighed against the cost

of estimating the size of a population; where it is impractical or cost-prohibitive, the binomial

sampling distribution is a practical alternative.

In addition to providing more accurate estimates of true prevalence and associated uncer-

tainty, our approach and application could be used to inform the design of disease monitoring

programs prior to data collection [50]. Previous work on the power of these testing protocols

to detect pathogens and estimate their prevalence provided critical insight into sampling

design, including recommendations for minimum sample sizes and the number of swabs per

animal [19,51,52]. Guided by this prior work, our application allows a user to prospectively

assess the power of a specific sampling design for pathogen assessment. If there is an a priori
threshold for the probability that a pathogen is free from a herd prior to translocation, or a

required level of precision on estimates of true prevalence, the user can assess the efficacy of

different combinations of sample sizes, protocols, and swabs per animal to achieve that goal.

Where logistical limitations render the goal unachievable, that failure forces a user to adopt an

alternative sampling design to improve power or accept the risks of management actions

informed by imperfect sampling of pathogen communities. For example, when sample sizes

are small, even the comparatively high probabilities of detection for the protocols used to

assess the presence of M. ovipneumoniae may fail to yield the required precision. In that case, a
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sampling design can evolve to combine multiple testing protocols (a future direction for this

Shiny application) and samples in multiple years to improve inference [19,35], the risks associ-

ated with more uncertainty can be accepted, or alternately the management action or associ-

ated sampling plan be deemed unattainable and abandoned. In the case of M. ovipneumoniae,
serology testing is another option to assess its presence in a population at some point in recent

times. We recommend, however, that researchers and managers strive to detect the agent via

PCR because this allows characterization of the infection status at the moment of sampling,

which provides unequivocal proof of the pathogen’s presence and can help to infer the cause

of outbreaks, although we acknowledge other diagnostic tools are promising alternatives

[43,53,54]. A recent attempt to create a small domestic sheep flock free from M. ovipneumo-
niae based on intensive testing was unsuccessful at least in part due to imperfect detection of

the target pathogen, illustrating the challenges to successfully implementing such management

intervention strategies [55]. Use of our Shiny application would improve planning for such

management experiments and help provide realistic expectations for the level of effort that

might be required and practicality of meeting intervention goals. However, we acknowledge

that these results are based off of a single study evaluating testing protocols for respiratory

pathogens in bighorn sheep and, although they represent the best available information for

this study system, care should be taken when using this application for other systems that devi-

ate from the assumptions of either the model underlying the estimation of true prevalence in

the Shiny application, or the occupancy model used for the estimation of detection probabili-

ties. Moreover, these results apply only at the population level. Future work is required to

address how they may translate to the individual level if prevalence is related to individual

characteristics, and a promising direction takes advantage of a multiple-testing protocols using

a longitudinal design in a probabilistic framework [43].

Respiratory disease in bighorn sheep is a critical factor limiting population growth rates

and the restoration of populations to historic ranges [30–32,56]. More work is needed to

understand the linkages between pathogen and host population dynamics and, thus, to

develop effective management strategies to recover bighorn sheep in the face of disease. We

suggest that the first step towards improved understanding of the role of pathogens in bighorn

sheep disease outbreaks is the accurate characterization of pathogen communities by account-

ing for imperfect probabilities of detection. Failure to properly account for imperfect probabil-

ities of detection has two important consequences. First, an erroneous understanding of which

pathogens are present can result in limited resources being poorly used, e.g., the translocation

of sheep from herds that might not test positive for pathogens but nonetheless may have a

non-trivial probability of hosting the pathogen. Second, biased estimates of prevalence that

result from failing to account for imperfect detection make evaluating associations between

pathogen and host population dynamics intractable, particularly where a polymicrobial origin

of the disease is possible. To avoid these consequences and ensure management decisions are

well-informed, accounting for imperfect detection in diagnostic tests should become the para-

digm for wildlife disease monitoring programs.

Supporting information

S1 Fig. Summary output from the model with estimates of the probability the herd is free

from a pathogen and prevalence assuming sampling from an infinite population. In this

specific example, 0 out of 16 animals in the Petty Creek herd (2015–2016) tested positive for

Mycoplasma ovipneumoniae using the TSB-PCR protocol with 2 swabs per animal.

(TIF)
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S2 Fig. Summary output from the model with estimates of the probability the herd is free

from a pathogen and prevalence assuming sampling from a finite population. In this spe-

cific example, 0 out of 16 animals in the Petty Creek herd (2015–2016) tested positive for

Mycoplasma ovipneumoniae using the TSB-PCR protocol with 2 swabs per animal. These

results agree closely with those that assumed a finite population (S1 Fig).

(TIF)

S3 Fig. Summary output from the model with estimates of the probability the herd is free

from a pathogen and prevalence assuming sampling from a finite population. In this spe-

cific example, 10 out of 31 animals in the Taylor-Hilgard herd (2016–2017) tested positive for

Mycoplasma ovipneumoniae using the TSB-PCR protocol with 1 swab per animal.

(TIF)

S4 Fig. Summary output from the model with estimates of the probability the herd is free

from a pathogen and prevalence assuming sampling from a finite population. In this spe-

cific example, 7 out of 29 animals in the Taylor-Hilgard herd (2013–2014) tested positive for

Mannheimia haemolytica using the TSB-culture protocol with 1 swab per animal.

(TIF)

S5 Fig. Summary output from the model with estimates of the probability the herd is free

from a pathogen and prevalence assuming sampling from an infinite population. In this

specific example, 0 out of 16 animals in the Highlands herd (2015–2016) tested positive for

Mannheimia spp. using the TSB-culture protocol with 1 swab per animal.

(TIF)

S6 Fig. Summary output from the model with estimates of the probability the herd is free

from a pathogen and prevalence assuming sampling from a finite population. In this spe-

cific example, 0 out of 16 animals in the Highlands herd (2015–2016) tested positive for Man-
nheimia spp. using the TSB-culture protocol with 1 swab per animal.

(TIF)

S1 Table. Description of diagnostic protocols used for examples from bighorn sheep.
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